O-Dealkylation of fluoxetine in relation to CYP2C19 gene dose and involvement of CYP3A4 in human liver microsomes.

نویسندگان

  • Zhao-Qian Liu
  • Bing Zhu
  • Yun-Fu Tan
  • Zhi-Rong Tan
  • Lian-Sheng Wang
  • Song-Lin Huang
  • Yan Shu
  • Hong-Hao Zhou
چکیده

This work evaluated the kinetic behavior of fluoxetine O-dealkylation in human liver microsomes from different CYP2C19 genotypes and identified the isoenzymes of cytochrome P450 involved in this metabolic pathway. The kinetics of the rho-trifluoromethylphenol (TFMP) formation from fluoxetine was determined in human liver microsomes from three homozygous (wt/wt) and three heterozygous (wt/m1) extensive metabolizers (EMs) and three poor metabolizers (PMs) with m1 mutation (m1/m1) with respect to CYP2C19. The formation rate of TFMP was determined by gas chromatograph with electron-capture detection. The kinetics of TFMP formation was best described by the two-enzyme and single-enzyme Michaelis-Menten equation for liver microsomes from CYP2C19 EMs and PMs, respectively. The mean intrinsic clearance (V(max)/K(m)) for the high- and low-affinity component was 25.2 microl/min/nmol and 3.8 microl/min/nmol of cytochrome P450 in the homozygous EMs microsomes and 12.8 microl/min/nmol and 2.9 microl/min/nmol of cytochrome P450 in the heterozygous EMs microsomes, respectively. Omeprazole (a CYP2C19 substrate) at a high concentration and triacetyloleandomycin (a selective inhibitor of CYP3A4) substantially inhibited O-dealkylation of fluoxetine. Furthermore, fluoxetine O-dealkylation was correlated significantly with S-mephenytoin 4'-hydroxylation at a low substrate concentration and midazolam 1'-hydroxylation at a high substrate concentration in liver microsomes of 11 Chinese individuals, respectively. Moreover, there were obvious differences in the O-dealkylation of fluoxetine in liver microsomes from different CYP2C19 genotypes and in microsomal fractions of different human-expressed lymphoblast P450s. The results demonstrated that polymorphic CYP2C19 and CYP3A4 enzymes were the major cytochrome P450 isoforms responsible for fluoxetine O-dealkylation, whereas CYP2C19 catalyzed the high-affinity O-dealkylation of fluoxetine, and its contribution to this metabolic reaction was gene dose-dependent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytochrome P450 3A4 is the major enzyme involved in the metabolism of the substance P receptor antagonist aprepitant.

The contribution of human cytochrome P450 (P450) isoforms to the metabolism of aprepitant in humans was investigated using recombinant P450s and inhibition studies. In addition, aprepitant was evaluated as an inhibitor of human P450s. Metabolism of aprepitant by microsomes prepared from baculovirus-expressed human P450s was observed only when CYP1A2, CYP2C19, or CYP3A4 was present in the expres...

متن کامل

Human buprenorphine N-dealkylation is catalyzed by cytochrome P450 3A4.

Buprenorphine (BN) is a thebaine derivative with analgesic properties. To identify and characterize the cytochrome P450 (CYP) enzyme(s) involved in BN N-dealkylation, in vitro studies using human liver microsomes and recombinant human CYP enzymes were performed. Norbuprenorphine formation from BN was measured by a simple HPLC-UV assay method, without extraction. The BN N-dealkylation activities...

متن کامل

Short Communication Human Buprenorphine N-Dealkylation Is Catalyzed by Cytochrome P450 3A4

Buprenorphine (BN) is a thebaine derivative with analgesic properties. To identify and characterize the cytochrome P450 (CYP) enzyme(s) involved in BN N-dealkylation, in vitro studies using human liver microsomes and recombinant human CYP enzymes were performed. Norbuprenorphine formation from BN was measured by a simple HPLC-UV assay method, without extraction. The BN N-dealkylation activities...

متن کامل

In vitro characterization of the metabolism of haloperidol using recombinant cytochrome p450 enzymes and human liver microsomes.

A systematic in vitro study was carried out to elucidate the enzymes responsible for the metabolism of haloperidol (HAL) using human liver microsomes and recombinant human cytochrome P450 isoenzymes. In the first series of experiments, recombinant cytochrome P450 (P450) isoenzymes were used to evaluate their catalytic involvement in the metabolic pathways of HAL. Recombinant CYP3A4, CYP3A5, and...

متن کامل

Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole.

Voriconazole is a triazole antifungal agent with potent activity against a broad spectrum of clinically significant pathogens. In vivo and in vitro studies have demonstrated that voriconazole is extensively metabolized, with the major circulating metabolite resulting from N-oxidation. In the present study, we report on the human cytochrome P450 enzymes responsible for the generation of this met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 300 1  شماره 

صفحات  -

تاریخ انتشار 2002